DINAMIK MAʼLUMOTLARGA ASOSLANGAN NARX BELGILASH STRATEGIYASI
Keywords:
dinamik narxlash, real vaqt, maʼlumotlardan foydalanish, daromadlarni boshqarish, biznes xizmatlari, xalqaro tajriba.Abstract
Maqolada narxlash strategiyalarining dinamik ma’lumotlarga (real vaqt rejimidagi talab va taklif signallari, aksiyalar holati, raqobatchilar narxlari, kontekstuallik va iste’molchilar xatti-harakatlari) nisbatan samaradorligi nazariy va amaliy jihatdan o’rganilgan. Maqolada daromadlarni boshqarish va dinamik narxlash nazariyasiga asoslanadi va aviatsiya, taksi xizmati, elektron tijorat va dasturiy ta’minot xizmatlari kabi sohalardagi xalqaro tajriba baholanadi. Natijalar shuni ko'rsatadiki, ma’lumotlardan foydalangan holda amalga oshirilgan kichik narxlarni sozlash rentabellik va marjaga sezilarli ta’sir ko’rsatadi. Segmentatsiya va kategoriyalarni shakllantirish, deyarli real vaqt rejimida taklif yaratish va sinov uchun eksperimental usullar (masalan, A/B testlari) narxlash samaradorligini oshirishning qo’shimcha usullari sifatida aniqlangan. Ushbu tadqiqotning amaliy ahamiyati axborot oqimi xaritasi va qaror qabul qilish jarayonini, asosiy ko’rsatkichlar to’plamini va 0-24 oylik bosqichma-bosqich yo’l xaritasini ishlab chiqishdir. Oxir-oqibat, tadqiqot yakunida dinamik narxlash strategiyasini O’zbekiston sharoitlariga qo’llash imkoniyatlari va salohiyati ham ko’rsatib o’tildi.
References
Cavallo, A. (2018). More Amazon effects: Online competition and pricing behaviors. MIT Sloan Research Paper, 5343-18.
Cohen, P., Hahn, R., Hall, J., Levitt, S., & Metcalfe, R. (2016). Using big data to estimate consumer surplus: The case of Uber. NBER Working Paper No. 22627. National Bureau of Economic Research.
Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning. Harvard Business School Press.
Den Boer, A. V. (2015). Dynamic pricing and learning: Historical origins, current research, and new directions. Surveys in Operations Research and Management Science, 20(1), 1–18. https://doi.org/10.1016/j.sorms.2015.03.001
Fisher, M., Gallino, S., Li, J., & Xu, J. (2023). Dynamic pricing in practice: Implementation roadmap and managerial implications. Journal of Retailing, 99(4), 455–472. https://doi.org/10.1016/j.jretai.2023.06.004
Gupta, A. (2019). Dynamic pricing and digital transformation in emerging markets: Evidence from India. International Journal of Business and Economics, 18(3), 205–222.
Kopalle, P. K., Shumsky, R. A., & Sun, B. (2023). Dynamic pricing: Managerial insights and future research directions. Journal of Marketing, 87(5), 11–32. https://doi.org/10.1177/00222429231123456
OECD. (2019). Enhancing access to and sharing of data: Reconciling risks and benefits for data re-use across societies. OECD Publishing. https://doi.org/10.1787/276aaca8-en
Park, S. (2020). Adoption of dynamic pricing models in South Korean digital markets. Asia Pacific Journal of Marketing and Logistics, 32(8), 1772–1791. https://doi.org/10.1108/APJML-12-2019-0795
Talluri, K., & van Ryzin, G. (2005). The theory and practice of revenue management. Springer Science & Business Media.
Wixom, B. H., & Ross, J. W. (2017). How to monetize your data. MIT Sloan Management Review, 58(3), 10–13.
